
1

Nicolas Spyratos

Rewriting preferences as queries

University of Paris 11
Orsay Centre

2

fact:
when you query a big data set chances are that the answer will be big as well

problem:
it is difficult for the user to find an item of int erest in a big answer set

one solution:
partition the answer into smaller sets and show one part at a time
(showing “best parts” first)

� one way to achieve this is to exploit user preferences

3various kinds of user preferences

• in terms of their nature preferences can be:

quantitative (John likes BMWs 80%, and VWs 60%, …)

qualitative (I like BMW more than VW)
� easy to express by the casual user

• in terms of their persistence in time preferences c an be:

long term preferences
either discovered by the system (unobtrusively, from query logs) or declared explicitly by the user

short term preferences
expressed explicitly by the user, online

• the nature and persistence in time are orthogonal f eatures of preferences
• in this presentation we focus on qualitative prefer ences (whether short or long term)

4the basic setting through an example

Serial Make Color Mileage Price Year

1 BMW black 35000 3800 2002

2 Honda blue 63000 2900 2000

… … … … … …

Table T (e-catalogue such as Autoreflex)

as T is usually large chances are

that query answers are large as well

usual query Q : VW∨∨∨∨BMW (meaning: select * from T where (Make=VW)∨(Make=BMW)

preference P : Red ���� Black (meaning “Red is preferred to Black”)

answer :
standard approach: compute ans(Q) then use P to partition ans(Q) into a sequence of two
tables: TRed , TBlack
rewriting approach : use P to rewrite Q into a sequence of two queries: QRed ∧Q , QBlack∧Q
whose answers are TRed , TBlack

5

DBusual query Q ans(Q)

standard approach:

DB
usual query Q ans(Q0∧Q), …, ans(Qm∧Q)

+ preferences P

rewriting approach:

rewriting

T0 Tm

advantage of rewriting :
rewriting is transparent to the system, it is possible to do incremental evaluation under user control

the problem we consider : rewrite P into the sequence Q 0, …, Qm
(forgetting about Q for the moment, i.e. P is the query)

ICDE 2008 , ADBIS 2011, ASSETS Project (2010-2012), ICFCA 2012,

sequence of usual queries

Q0∧Q, …, Qm∧Q

ordered partition of ans(Q)

+ preferences P

T0, …, Tm

ordered partition of ans(Q)

6

preference over attribute A : pair of values (v, w) from the domain of A (v≠w)
(read as “ v is preferred to w” or “ v precedes w”, or “v dominates w”, denoted as v�w)

preference relation or preference graph over A : a set P.A of preferences over A

BMW

HondaToyota

VW

P.Make:

assumption : the only values of interest to the user are those expressed in the preference graph
(hence a sort of “closed world assumption”)
as a consequence, the only tuples of interest are those in the answer to the following query:
induced query: Q(P.A)= disjunction of all values in P.A
in our example: Q(P.Make)= BMW∨Toyota∨VW∨Honda

no other assumption is made on the preference rela tion
(in particular, the preference relation may not be transitive and may contain cycles)

7

ranking of nodes in the preference graph :
(assuming acyclicity for now and we’ll see shortly how we can handle cycles)

if v is a root then rank(v)=0
else rank(v)= the maximal length of path among all paths going from a root to v

BMW

HondaToyota

VW0 1

0 2

• the further away from the roots the less preferred a value is

• each non root value of rank i>0 is preceded by a va lue of rank i-1

B i= {v/ rank(v)= i}

8

B0= {BMW, Toyota}

B1= {VW}

B2= {Honda}

node ranking

Q0= BVW∨∨∨∨Toyota
Q1=VW
Q2= Honda

query
definition

BMW

HondaToyota

VW0 1

0 2

rewriting a preference graph into a sequence of que ries based on ranks:

Q2Q1Q0

induced query : BMW∨Toyota ∨ VW ∨ Honda

actually, we have an ordered partition of the indu ced query:

rewritten query:

• each query Q i is evaluated in order of increasing rank (hence best answers first)
• evaluation is under user control (incremental evaluation)
• result presentation adapts to user preferences
(i.e. the answer to the same induced query will be presented differently for different preferences)
• skyline of T:
it is defined to be the set of all non dominated tuples of T (w.r.t. the given preferences),
hence it is the answer to the first query Q i such that ans(Q i)≠∅∅∅∅
(and this Qi depends on the current instance of T)

9
additional issues

user profile:
the sequence Q 0, Q1, Q2 , …, Qm into which the preference graph is rewritten can be seen
as the user’s prefrence profile (to be stored, and invoked in subsequent query sessions)

Qi ’s with large answer sets:
Qi can be modified using order-by and/or top k and/or “hard conditions”
(eventually through a dialogue with the user)

Ex:
Q : select * from T where (P.Make: BMW�VW) order-by Km
is rewritten as:
Q0: select * from T where (Make=BMW) order-by Km
Q1: select * from T where (Make=VW) order-by Km

10handling cycles in the preference graph

1. with the help of the user : show the cycles and ask the user to ‘break’ them
� need for algorithms for finding all cycles in the preference graph

2. without user involvement :

2.1 refusing the addition of a preference if the current acyclic graph becomes cyclic

2.2 considering all values in a cycle to be of equal preference, thus turning each maximal
cycle into one node

� need for algorithms for finding all cycles in the preference graph

a

b c
d

e f

a

b

f

11extending the approach

preferences over more than one attribute can be dec lared either conjunctively or
independently

VW∧Red VW∧Black

BMW∧Red BMW∧Black

B0= {VW∧Red}
B1= {VW∧Black, BMW∧Red}

B2= {BMW∧Black}

node ranking

in a conjunctive declaration we proceed as in the c ase of a single attribute
(the only difference is that the nodes are conjunctions of values instead of single values)

ex: P.{Make, Colour} = {VW∧Red�VW∧Black, BMW∧Red�BMW∧Black}

Q0= {VW∧Red}
Q1={(VW∧Black)∨∨∨∨(BMW∧Red)}
Q2= BMW∧Black

query
definition

12an independent declaration can be converted into a conjunctive one in two steps

Step 1: combine the values present in the preference relati ons:

VW�BMW
Red�Black

VW∧Red VW∧Black

BMW∧Red BMW∧Black

combining values

Step 2: define a preference rel. over the combined values b ased on the given preference rel.

to perform this second step we need a preference re l. over the attributes (given by the user)

Pareto: all attributes are of the same importance
Prioritized: there is a prioritiy over attributes

(priority: linear ordering of the attributes over which preferences are declared)

13
Preferences : P.Make= {VW�BMW}, P.Colour = {Red�Black}

VW∧Red VW∧Black

BMW∧Red BMW∧Black

VW∧Red VW∧Black

BMW∧Red BMW∧Black

VW∧Red VW∧Black
BMW∧Red BMW∧Black

Pareto Prioritized (with Make�Colour)

once the graph is constructed we proceed to rewriting as for single attributes:

Pareto: B0= {VW∧Red}, B1= {VW∧Black, BMW∧Red}, B2= {BMW∧Black}

Prioritized: B0= {VW∧Red}, B1= {VW∧Black}, B2= {BMW∧Red}, B3= {BMW∧Black}

question: can we find the B0, B1, …. without constructing the derived graphs?
(i.e. based on the graphs of the individual attributes)

14avoiding derived graphs:

P.Make= {VW�BMW} B0
M = {VW} , B1

M = {BMW}
P.Colour = {Red�Black} B0

C = {Red}, B1
C = {Black}

Prioritized : B0 = B0
M xB0

C = {VW∧Red}
(Make� Colour) B1 = (B0

M xB1
C) ={VW∧Black}

B2 = B1
M xB0

C) = {BMW∧Red}
B3 = B1

M xB1
C) = {BMW∧Black}

skyline : the answer of the first query Qi such that ans(Qi)≠∅

Pareto : B0 = B0
M xB0

C = {VW∧Red}
B1 = (B0

M xB1
C)∪(B1

M xB0
C) = {VW∧Black, BMW∧Red}

B2 = B1
M xB1

C) = {BMW∧Black}

skyline : the answer of the first query Qi such that ans(Qi)≠∅ is a subset of the
skyline , not necessarily the whole skyline

(because of the unions)

15

1: a�b�c B0
1 = {a} , B1

1 = {b}, B2
1 = {c}

2: x�y�z B0
2 = {x} , B1

2 = {y}, B2
2 = {z}

Pareto over 1, 2:

Q0 = a∧x

Q1= (a∧y)∨(b∧x)

Q2= (a∧z)∨(b∧y) ∨(c∧x)

Q3 = (b∧z)∨(c∧y)

Q4 = c∧z

assuming ans(a∧x)=∅ and ans(b∧x)=∅,
the skyline is ans(a∧y)∪ans(c∧x)
- skyline can be computed incrementally (under user control)
- can be used to compute skylines over joins without computing the join

a∧∧∧∧x

a∧∧∧∧y b∧∧∧∧x

a∧∧∧∧z b∧∧∧∧y c∧∧∧∧x

b∧∧∧∧z c∧∧∧∧y

c∧∧∧∧z

ICFCA 2012

16

(Price <2000)&(Km<60000)

P.Model = VW�Clio
P.Colour : Red�Black

Priority : Model�Colour

...................

usual query

preferences

Priority
............

summarizing

preference query = usual query + preferences + priority + skyline +

preference query

17concluding remarks

• attribute values organized in a taxonomy (domains of relational tables are unordered sets)

• do we need to impose conditions on preference relat ions (e.g. transitivity)

• do we need more general kinds of priorities?
(e.g. priority over attribute sets, each set assumed to be Pareto)

• what happens with attributes over which no preferen ces are expressed
don’t care assumption? (as usual in databases), ceteris paribus assumption? a preference specification
language for expressing preferences and conditions?

• combining usual queries and preferences (priority to the query? to the preferences? no priority?)

18

E
E N D

D

