Rewriting preferences as queries

Nicolas Spyratos

University of Paris 11
Orsay Centre

fact:
when you query a big data set chances are that the answer will be big as well

problem:
it is difficult for the user to find an item of int erest in a big answer set

one solution;

partition the answer into smaller sets and show one part at a time
(showing “best parts” first)

- one way to achieve this is to exploit user preferences

various kinds of user preferences

* in terms of their nature preferences can be:

gquantitative (John likes BMWs 80%, and VWs 60%, ...)

qualitative (I like BMW more than VW)
- easy to express by the casual user

* in terms of their persistence in time preferences c an be:

long term preferences
either discovered by the system (unobtrusively, from query logs) or declared explicitly by the user

short term preferences
expressed explicitly by the user, online

 the nature and persistence in time are orthogonal f eatures of preferences
* in this presentation we focus on qualitative prefer ences (whether short or long term)

the basic setting through an example

Table T (e-catalogue such as Autoreflex)

Serial Make |Color Mileage Price Year
1 BMW black 35000 3800 2002
2 Honda blue 63000 2900 2000

as T is usually large chances are

that query answers are large as well

usual query Q : VWIOBMW (meaning: select * from T where (Make=VW)(Make=BMW)

preference P : Red - Black (meaning “Red is preferred to Black”)

answer :
standard approach:
tables: Trey » Taiack

compute ans(Q) then use P to partition ans(Q) into a sequence of two

rewriting approach : use P to rewrite Q into a sequence of two queries: Qreq IQ , Qgjack 1Q
whose answers are Troq s Tglack

standard approach:

usual query Q ;@—> ans(Q) > Tg, ooy Thy
+ preferences P Y

ordered partition of ans(Q)

rewriting approach:

| rewriting — >
usualqueryQ —— ", Q,Q, ..., Q,,[0Q _. ans(Q,Q), ..., ans(Q,,[Q)
+ preferences P ' -
P sequence of usual queries T0 Tm

J

~

ordered partition of ans(Q)

advantage of rewriting
rewriting is transparent to the system, it is possible to do incremental evaluation under user control

the problem we consider : rewrite P into the sequence Q o, ..., Q,,
(forgetting about Q for the moment, i.e. P is the query)

ICDE 2008 , ADBIS 2011, ASSETS Project (2010-2012), ICFCA 2012,

preference over attribute A : pair of values (v, w) from the domain of A (v#w)
(read as “ v is preferred to w” or “ v precedes w”, or “v dominates w”, denoted as v>w)

preference relation or preference graph over A : a set P.A of preferences over A

BMW > VW
P.Make: \ l
Toyota > Honda

assumption : the only values of interest to the user are those expressed in the preference graph
(hence a sort of “closed world assumption”)

as a consequence, the only tuples of interest are those in the answer to the following query:
induced query: Q(P.A)= disjunction of all values in P.A

in our example: Q(P.Make)= BMW[IToyotal VW[IHonda

no other assumption is made on the preference rela tion
(in particular, the preference relation may not be transitive and may contain cycles)

ranking of nodes in the preference graph :
(assuming acyclicity for now and we’ll see shortly how we can handle cycles)

If v is a root then rank(v)=0
else rank(v)= the maximal length of path among all paths going from a root to v

0 1
\ l B,= {v/ rank(v)= i}
0 2
Toyota » Honda

- the further away from the roots the less preferred a value is

» each non root value of rank i>0 is preceded by ava lue of rank i-1

rewriting a preference graph into a sequence of que ries based on ranks:

1 —
_ B,= {BMW, Toyota}
— VW node ranking °

~_l
0 5 B,= {Honda}

Toyota » Honda query
definition
actually, we have an ordered partition of the indu ced query: o= BVWU[Toyota
_ Q,=VW
induced query : BMW(LIToyota [0 VW [Honda Qi: Honda
rewritten query: Q. Q, Q,

« each query Q ; is evaluated in order of increasing rank (hence best answers first)
 evaluation is under user control (incremental evaluation)

e result presentation adapts to user preferences

(i.e. the answer to the same induced query will be presented differently for different preferences)
 skyline of T:

it is defined to be the set of all non dominated tuples of T (w.r.t. the given preferences),
hence it is the answer to the first query Q ; such that ans(Q ;)#0

(and this Q; depends on the current instance of T)

additional issues

user profile:
the sequence Q ,, Q,, Q,, ..., Q,, into which the preference graph is rewritten can be seen
as the user’s prefrence profile (to be stored, and invoked in subsequent query sessions)

Q, s with large answer sets:
Q, can be modified using order-by and/or top k and/or “hard conditions”
(eventually through a dialogue with the user)

Ex:

Q : select * from T where (P.Make: BMW->VW) order-by Km
IS rewritten as:

QO: select * from T where (Make=BMW) order-by Km

Q1: select * from T where (Make=VW) order-by Km

handling cycles in the preference graph 10

1. with the help of the user : show the cycles and ask the user to ‘break’ them
- need for algorithms for finding all cycles in the preference graph

2. without user involvement
2.1 refusing the addition of a preference if the current acyclic graph becomes cyclic
2.2 considering all values in a cycle to be of equal preference, thus turning each maximal

cycle into one node
- need for algorithms for finding all cycles in the preference graph

extending the approach H

preferences over more than one attribute can be dec lared either conjunctively or
independently

In a conjunctive declaration we proceed as inthe c ase of a single attribute
(the only difference is that the nodes are conjunctions of values instead of single values)

ex: P.{Make, Colour} ={VW[IRed->VW[Black, BMW[Red->BMWI[Black}

VWCRed — . VWIBlack _
© e node ranking B,= {VWL[Red}
l \ l - — B,= {VWIBlack, BMWRed}
BMWORed—>BMWU[Black B,= {BMWLBIlack}
query
definition

Qo= {VWIRed}
Q,={(VWIBlack)(BMWRed)}
Q,= BMWBlack

an independent declaration can be converted into a conjunctive one in two steps 12

Step 1. combine the values present in the preference relati ons:

Red->Black —

VW->BMW } combining values VW[Red VWI[Black

BMW[Red BMW[Black

Step 2: define a preference rel. over the combined values b ased on the given preference rel.

to perform this second step we need a preference re |. over the attributes (given by the user)

Pareto: all attributes are of the same importance
Prioritized: there is a prioritiy over attributes
(priority: linear ordering of the attributes over which preferences are declared)

Preferences P.Make = {VW->BMW}, P.Colour = {Red->Black}
VW[ORed VWI[Black
BMW[Red BMW([Black
— 7
——
Pareto / \Prioritized (with Make->Colour)
VWORed — ,VWI[BIlack VWIRed — ,VWI[BIlack

BMVVlDRed\—.BI\A/IVVlDBIaCk l >< l

BMW[IRed — »BMWI[BIack

once the graph is constructed we proceed to rewriting as for single attributes:
Pareto: Bo,= {VWDORed}, B,={VW[BIlack, BMW[IRed}, B,={BMW[BIlack}
Prioritized: B,= {VW[Red}, B,={VW[IBIlack}, B,= {BMW[IRed}, B;={BMW[Black}

question: can we find the B, B4, without constructing the derived graphs?
(i.e. based on the graphs of the individual attributes)

13

avoiding derived graphs: 14

P.Make= {VW->BMW} B,M = {VW}, B,M = {BMW}
P.Colour = {Red->Black} B,¢ = {Red}, B,¢ = {Black}
Prioritized : B, = BV XB,© = {VW[Red}

(Make-> Colour) B, = (B,M xB;¢) ={VW[Black}
B, = B,M xB.C) = {BMWIRed}
B, = B, xB,C) = {BMW[Black}

skyline : the answer of the first query Q; such that ans(Q;)#L

Pareto : B, = BV xB,¢ = {VW[Red}
B, = (B, xB,C)0(B,M xB,C) = {VWIBlack, BMWORed}
B, = B, xB,°) = {BMWBlack}

skyline : the answer of the first query Q, such that ans(Q;)#0 is a subset of the
skyline , not necessarily the whole skyline

(because of the unions)

1: a%b%c Bol = {a} , Bll — {b}’ le — {C}
2. XYz B2 ={X} , B2 ={y}, B,2={z}

Pareto over 1, 2:
Q, = alx

Q= (ally)U(bkx)

o ~

Q,= () D(bly) [(cT) aDy\ /bljx
/
\

S
\CDy _—
.~

c X

o

allz

v
Qs = (brR)cry) \

Q,=clz

assuming ans(allx)=0 and ans(b[x)=C

the skyline is ans(ally)Jans(c[x)

- skyline can be computed incrementally (under user control)

- can be used to compute skylines over joins without computing the join

ICFCA 2012

15

summarizing

preference query = usual query + preferences + priority + skyline +

(Price <2000)&(Km <60000)

P.Model = VW->Clio
P.Colour : Red->Black

Priority : Model->Colour

} usual query

} preferences

} Priority

> preference query

16

concluding remarks 17

o attribute values organized in a taxonomy (domains of relational tables are unordered sets)
 do we need to impose conditions on preference relat jons (e.g. transitivity)

 do we need more general kinds of priorities?
(e.g. priority over attribute sets, each set assumed to be Pareto)

« what happens with attributes over which no preferen ces are expressed

don’t care assumption? (as usual in databases), ceteris paribus assumption? a preference specification
language for expressing preferences and conditions?

« combining usual queries and preferences (priority to the query? to the preferences? no priority?)

18

W =Z O

