
Query rewriting for ontology-based (big) data access

Maurizio Lenzerini

Dipartimento di Ingegneria Informatica
Automatica e Gestionale Antonio Ruberti

Global scientific data infrastructures: The findability challenge

Taormina, May 10–11, 2012

Ontology-based data access

C1

C2

C3
Ontology

Source
1

Source
2

Source
3

Mapping

Data sources

Query

Ontology, used as the conceptual layer to give clients a unified
conceptual specification of the domain of interest.

Data sources, representing external, independent, heterogeneous,
storage (or, more generally, computational) structures.

Mappings, used to semantically link data at the sources to the
ontology.

Maurizio Lenzerini Query rewriting for OBDA The findability challenge 2012 (1/58)

Ontology, mapping, sources

Ontology
terminology,
taxonomy,
conceptual schema,
logical theory.

Data sources
databases,
KR assertional components,
semi-structured data,
documents.

Mappings
query-to-query,
one-to-one,
annotations.

Challenge: optimal compromise between expressive power and
effectiveness of the reasoning system.

Maurizio Lenzerini Query rewriting for OBDA The findability challenge 2012 (2/58)

Ontology-based data access with logic

An OBDA system is a triple 〈T ,S,M〉, where

T is the ontology, expressed as a logical theory in a specific logical
language

S is the source database (whose signature is disjoint from the one
of T)

M is a set of mapping assertions; in the general case, each one has
the form

Φ(~x) ; Ψ(~x)

where

Φ(~x) is a query over S, returning values for ~x
Ψ(~x) is a query over T , whose free variables are from ~x.

Maurizio Lenzerini Query rewriting for OBDA The findability challenge 2012 (3/58)

Semantics

Let I= (∆I , ·I) be a Tarskian interpretation for the signature of T .

Def.: Model

I= (∆I , ·I) is a model of 〈T ,S,M〉 if:

I is a model of T ;

I satisfies M wrt S, i.e., satisfies every assertion in M wrt S

Def.: Mapping satisfaction

We say that I satisfies Φ(~x) ; Ψ(~x) wrt a database S, if the sentence

∀~x (Ψ(~x) → Ψ(~x))

is true in I ∪ S.

Def.: The certain answers to a query q(~x) over 〈T ,S,M〉

cert(q, 〈T ,S,M〉) =
⋂

I model of 〈T ,S,M〉

qI

Maurizio Lenzerini Query rewriting for OBDA The findability challenge 2012 (4/58)

Abstracting from the mapping

In this talk, we abstract from the mapping, because we want to focus on
ontologies.

We assume that M is a GAV mapping, and we denote by M(S) the
database obtained by “transferring” the data from the sources to the
alphabet of the ontology.

M(S) can be seen as a set of facts built on the alphabet of T (i.e., a
set of ground atomic formulas in logic, or simply, an ABox, in DL
terminology).

In practice, to go from a query over M(S) to a query over S, we can
rewrite the query based on M.

Maurizio Lenzerini Query rewriting for OBDA The findability challenge 2012 (5/58)

Ontology-based data access: queries

In principle, we are interested in First-Order Logic (FOL), which is the
standard query language for databases.

Example

name: String
age: Integer

Faculty

Professor

AssocProf

Dean

1..1

1..*

isAdvisedBy

name: String

College
1..*

1..1

1..1

worksFor

isHeadOf

1..*

{disjoint}

q(nf , af ,nd) ← worksFor(f, c) ∧ ¬isHeadOf(d, c) ∧ name(f,nf) ∧
name(d,nd) ∧ age(f, x) ∧ age(d, x)

Maurizio Lenzerini Query rewriting for OBDA The findability challenge 2012 (6/58)

Query language for user queries

Fact

Answering FOL queries is undecidable, even for very simple ontology
and mapping languages.

Unions of conjunctive queries (UCQs) do not suffer from this problem.
Conjunctive queries (CQ) are queries of the form (Datalog notation)

q(~x)← R1(~x, ~y), . . . , Rk(~x, ~y)

where the lhs is the query head, the rhs is the body, and each Ri(~x, ~y) is
an atom using (some of) the free variables ~x, the existentially quantified
variables ~y, and possibly constants.

Correspond to SQL/relational algebra select-project-join (SPJ)
queries – the most frequently asked queries.

They can also be written as SPARQL queries.

A Union of CQs (UCQ) is a set of CQs with the same head
predicate.

Maurizio Lenzerini Query rewriting for OBDA The findability challenge 2012 (7/58)

QA in OBDA – Example(∗)

Employee

Manager

AreaManager

TopManager

supervisedBy

{disjoint, complete}

officeMate

(∗) Due to [Andrea Schaerf 1993].

Manager is partitioned into AreaManager
and TopManager.

Employee ⊇ { john }
Manager ⊇ { andrea }

AreaManager ⊇ { paul }
TopManager ⊇ { mary }
supervisedBy ⊇ { (john,andrea),(john,mary) }

officeMate ⊇ { (mary,andrea),(andrea,paul) }

john

andrea:Manager mary:TopManager
officeMate

supervisedBy supervisedBy

paul:AreaManager

officeMate

Maurizio Lenzerini Query rewriting for OBDA The findability challenge 2012 (8/58)

QA in OBDA – Example (cont’d)

Employee

Manager

AreaManager

TopManager

supervisedBy

{disjoint, complete}

officeMate john

andrea:Manager mary:TopManager
officeMate

supervisedBy supervisedBy

paul:AreaManager

officeMate

q(x) ← ∃y, z. supervisedBy(x, y), TopManager(y),
officeMate(y, z), AreaManager(z)

Answer: ???

To determine this answer, we need to resort to reasoning by cases on
the instances.

Maurizio Lenzerini Query rewriting for OBDA The findability challenge 2012 (9/58)

QA in OBDA – Example (cont’d)

Employee

Manager

AreaManager

TopManager

supervisedBy

{disjoint, complete}

officeMate john

andrea:Manager mary:TopManager
officeMate

supervisedBy supervisedBy

paul:AreaManager

officeMate

q(x) ← ∃y, z. supervisedBy(x, y), TopManager(y),
officeMate(y, z), AreaManager(z)

Answer: ???

To determine this answer, we need to resort to reasoning by cases on
the instances.

Maurizio Lenzerini Query rewriting for OBDA The findability challenge 2012 (9/58)

QA in OBDA – Example (cont’d)

Employee

Manager

AreaManager

TopManager

supervisedBy

{disjoint, complete}

officeMate john

andrea:Manager mary:TopManager
officeMate

supervisedBy supervisedBy

paul:AreaManager

officeMate

q(x) ← ∃y, z. supervisedBy(x, y), TopManager(y),
officeMate(y, z), AreaManager(z)

Answer: { john }

To determine this answer, we need to resort to reasoning by cases on
the instances.

Maurizio Lenzerini Query rewriting for OBDA The findability challenge 2012 (9/58)

Inference in query answering

cert(q, 〈T ,M(S)〉)
Logical inference

q

M(S)

T

To be able to deal with data efficiently, we need to separate the
contribution of M(S) from the contribution of q and T .

; Query answering by query rewriting.

Maurizio Lenzerini Query rewriting for OBDA The findability challenge 2012 (10/58)

Query rewriting

rewriting
Perfect

(under OWA)
Query

(under CWA)

evaluation

q

T

M(S) cert(q, 〈T ,M(S)〉)

rq,T

Query answering can always be thought as done in two phases:

1 Perfect rewriting: produce from q and the TBox T a new query
rq,T (called the perfect rewriting of q w.r.t. T).

2 Query evaluation: evaluate rq,T over the M(S) seen as a
complete database (and without considering the TBox T).
; Produces cert(q, 〈T ,M(S)〉).

Note: The “always” holds if we pose no restriction on the language in which to

express the rewriting rq,T .

Maurizio Lenzerini Query rewriting for OBDA The findability challenge 2012 (11/58)

Query rewriting (cont’d)

Reasoning

Query Result

Reasoning

Data
Source

Logical
Schema

Schema /
Ontology

Maurizio Lenzerini Query rewriting for OBDA The findability challenge 2012 (12/58)

Query rewriting (cont’d)

Reasoning

Rewritten
Query

Query Result

Reasoning

Data
Source

Logical
Schema

Schema /
Ontology

Maurizio Lenzerini Query rewriting for OBDA The findability challenge 2012 (12/58)

Language of the rewriting

The expressiveness of the ontology language affects the query
language into which we are able to rewrite CQs:

When we can rewrite into FOL/SQL.
; Query evaluation can be done in SQL, i.e., via an RDBMS
(Note: FOL is in LogSpace).

When we can rewrite into an NLogSpace-hard language.
; Query evaluation requires (at least) linear recursion.

When we can rewrite into a PTime-hard language.
; Query evaluation requires full recursion (e.g., Datalog).

When we can rewrite into a coNP-hard language.
; Query evaluation requires (at least) power of Disjunctive
Datalog.

Maurizio Lenzerini Query rewriting for OBDA The findability challenge 2012 (13/58)

Complexity of query answering in DLs

Problem of rewriting is related to complexity of query answering.

Studied extensively for (unions of) CQs and various ontology languages:

Combined complexity Data complexity

Plain databases NP-complete in LogSpace (2)

OWL 2 (and less) 2ExpTime-complete coNP-hard (1)

(1) Already for a TBox with a single disjunction (see example above). (2)

This is what we need to scale with the data.

Questions

Can we find interesting families of DLs for which the query
answering problem can be solved efficiently (i.e., in LogSpace)?

If yes, can we leverage relational database technology for query
answering in OBDA?

Maurizio Lenzerini Query rewriting for OBDA The findability challenge 2012 (14/58)

Complexity of query answering in DLs

Problem of rewriting is related to complexity of query answering.

Studied extensively for (unions of) CQs and various ontology languages:

Combined complexity Data complexity

Plain databases NP-complete in LogSpace (2)

OWL 2 (and less) 2ExpTime-complete coNP-hard (1)

(1) Already for a TBox with a single disjunction (see example above). (2)

This is what we need to scale with the data.

Questions

Can we find interesting families of DLs for which the query
answering problem can be solved efficiently (i.e., in LogSpace)?

If yes, can we leverage relational database technology for query
answering in OBDA?

Maurizio Lenzerini Query rewriting for OBDA The findability challenge 2012 (14/58)

Complexity of query answering in DLs

Problem of rewriting is related to complexity of query answering.

Studied extensively for (unions of) CQs and various ontology languages:

Combined complexity Data complexity

Plain databases NP-complete in LogSpace (2)

OWL 2 (and less) 2ExpTime-complete coNP-hard (1)

(1) Already for a TBox with a single disjunction (see example above). (2)

This is what we need to scale with the data.

Questions

Can we find interesting families of DLs for which the query
answering problem can be solved efficiently (i.e., in LogSpace)?

If yes, can we leverage relational database technology for query
answering in OBDA?

Maurizio Lenzerini Query rewriting for OBDA The findability challenge 2012 (14/58)

Complexity of query answering in DLs

Problem of rewriting is related to complexity of query answering.

Studied extensively for (unions of) CQs and various ontology languages:

Combined complexity Data complexity

Plain databases NP-complete in LogSpace (2)

OWL 2 (and less) 2ExpTime-complete coNP-hard (1)

(1) Already for a TBox with a single disjunction (see example above). (2)

This is what we need to scale with the data.

Questions

Can we find interesting families of DLs for which the query
answering problem can be solved efficiently (i.e., in LogSpace)?

If yes, can we leverage relational database technology for query
answering in OBDA?

Maurizio Lenzerini Query rewriting for OBDA The findability challenge 2012 (14/58)

DL-LiteA ontologies

TBox assertions:

Class (concept) inclusion assertions: B v C, with:

B −→ A | ∃Q
C −→ B | ¬B

Property (role) inclusion assertions: Q v R, with:

Q −→ P | P−
R −→ Q | ¬Q

Functionality assertions: (funct Q)
Proviso: functional properties cannot be specialized.

ABox assertions: A(c), P (c1, c2), with c1, c2 constants

Note: DL-LiteA distinguishes also between object and data properties
(ignored here).

Maurizio Lenzerini Query rewriting for OBDA The findability challenge 2012 (15/58)

Semantics of DL-LiteA

Construct Syntax Example Semantics

atomic conc. A Doctor AI ⊆ ∆I

exist. restr. ∃Q ∃child− {d | ∃e. (d, e) ∈ QI}
at. conc. neg. ¬A ¬Doctor ∆I \AI

conc. neg. ¬∃Q ¬∃child ∆I \ (∃Q)I

atomic role P child P I ⊆ ∆I ×∆I

inverse role P− child− {(o, o′) | (o′, o) ∈ P I}
role negation ¬Q ¬manages (∆I ×∆I) \QI

conc. incl. B v C Father v ∃child BI ⊆ CI

role incl. Q v R hasFather v child− QI ⊆ RI

funct. asser. (funct Q) (funct succ) ∀d, e, e′.(d, e) ∈ QI ∧ (d, e′) ∈ QI → e = e′

mem. asser. A(c) Father(bob) cI ∈ AI

mem. asser. P (c1, c2) child(bob, ann) (cI1 , cI2) ∈ P I

DL-LiteA (as all DLs of the DL-Lite family) adopts the Unique Name
Assumption (UNA), i.e., different individuals denote different objects.

Maurizio Lenzerini Query rewriting for OBDA The findability challenge 2012 (16/58)

Capturing basic ontology constructs in DL-LiteA
ISA between classes A1 v A2

Disjointness between classes A1 v ¬A2

Domain and range of properties ∃P v A1 ∃P− v A2

Mandatory participation (min card = 1) A1 v ∃P A2 v ∃P−

Functionality of relations (max card = 1) (funct P) (funct P−)

ISA between properties Q1 v Q2

Disjointness between properties Q1 v ¬Q2

Note 1: DL-LiteA cannot capture completeness of a hierarchy. This
would require disjunction (i.e., OR).

Note2: DL-LiteA can be extended to capture also min cardinality
constraints (A v ≤ n Q), max cardinality constraints
(A v ≥ n Q), identification assertions, and denial assertions (not
considered here for simplicity).

Maurizio Lenzerini Query rewriting for OBDA The findability challenge 2012 (17/58)

Example

name: String
age: Integer

Faculty

Professor

AssocProf

Dean

1..1

1..*

isAdvisedBy

name: String

College
1..*

1..1

1..1

worksFor

isHeadOf

1..*

{disjoint}

Professor v Faculty
AssocProf v Professor

Dean v Professor
AssocProf v ¬Dean

Faculty v ∃age
∃age− v xsd:integer

(funct age)

∃worksFor v Faculty
∃worksFor− v College

Faculty v ∃worksFor
College v ∃worksFor−

∃isHeadOf v Dean
∃isHeadOf− v College

Dean v ∃isHeadOf
College v ∃isHeadOf−

isHeadOf v worksFor
(funct isHeadOf)

(funct isHeadOf−)
...

Maurizio Lenzerini Query rewriting for OBDA The findability challenge 2012 (18/58)

Technical properties of DL-LiteA

Completely symmetric w.r.t. direct and inverse roles: roles are
always navigable in the two directions

TBoxes may contain cyclic dependencies (which typically increase
the computational complexity of reasoning)

Example: A v ∃P , ∃P− v A

Does not enjoy the finite model property, unless we drop
functional assertions.

Maurizio Lenzerini Query rewriting for OBDA The findability challenge 2012 (19/58)

Query answering in DL-LiteA

Remark

We call positive inclusions (PIs) assertions of the form

B1 v B2, Q1 v Q2

whereas we call negative inclusions (NIs) assertions of the form

B1 v ¬B2, Q1 v ¬Q2

Theorem

Let q be a boolean UCQs and T = TPI ∪ TNI ∪ Tfunct be a TBox s.t.

TPI is a set of PIs
TNI is a set of NIs
Tfunct is a set of functionalities.

For each S such that 〈T ,S,M〉 is satisfiable, we have that

〈T ,S,M〉 |= q iff 〈TPI,S,M〉 |= q.

In other words, we have that cert(q, 〈T ,S,M)〉) = cert(q, 〈TPI,S,M)〉).

Maurizio Lenzerini Query rewriting for OBDA The findability challenge 2012 (20/58)

Query answering in DL-LiteA: Query rewriting

To the aim of answering queries, from now on we assume that T
contains only PIs.

Given a CQ q and a satisfiable 〈T ,S,M〉, we compute
cert(q, 〈T ,S,M〉) as follows

1 using T , reformulate q as a union rq,T of CQs.

2 Evaluate rq,T directly over M(S).

Correctness of this procedure shows FOL-rewritability of query
answering in DL-LiteA
; Query answering over DL-LiteA ontologies can be done using
RDMBS technology.
; System implemented: Mastro

Maurizio Lenzerini Query rewriting for OBDA The findability challenge 2012 (21/58)

Query answering in DL-LiteA: Query rewriting (cont’d)

Intuition: Use the PIs as basic rewriting rules

q(x) ← Professor(x)

AssProfessor v Professor
as a logic rule: Professor(z) ← AssProfessor(z)

Basic rewriting step:

when the atom unifies with the head of the rule (with mgu σ).

substitute the atom with the body of the rule (to which σ is applied).

Towards the computation of the perfect rewriting, we add to the input
query above the following query (σ = {z/x})

q(x) ← AssProfessor(x)

We say that the PI AssProfessor v Professor applies to the atom
Professor(x).

Maurizio Lenzerini Query rewriting for OBDA The findability challenge 2012 (22/58)

Query answering in DL-LiteA: Query rewriting (cont’d)

Consider now the query

q(x) ← teaches(x, y)

Professor v ∃teaches
as a logic rule: teaches(z1, z2) ← Professor(z1)

We add to the reformulation the query (σ = {z1/x, z2/y})

q(x) ← Professor(x)

Maurizio Lenzerini Query rewriting for OBDA The findability challenge 2012 (23/58)

Query answering in DL-LiteA: Query rewriting (cont’d)

Conversely, for the query

q(x) ← teaches(x, databases)

Professor v ∃teaches
as a logic rule: teaches(z1, z2) ← Professor(z1)

teaches(x, databases) does not unify with teaches(z1, z2), since the
existentially quantified variable z2 in the head of the rule does not
unify with the constant databases.

In this case the PI does not apply to the atom teaches(x, databases).

The same holds for the following query, where y is distinguished

q(x, y) ← teaches(x, y)

Maurizio Lenzerini Query rewriting for OBDA The findability challenge 2012 (24/58)

Query answering in DL-LiteA: Query rewriting (cont’d)

An analogous behavior with join variables

q(x) ← teaches(x, y),Course(y)

Professor v ∃teaches
as a logic rule: teaches(z1, z2) ← Professor(z1)

The PI above does not apply to the atom teaches(x, y).

Conversely, the PI

∃teaches− v Course
as a logic rule: Course(z2) ← teaches(z1, z2)

applies to the atom Course(y).

We add to the perfect rewriting the query (σ = {z2/y})

q(x) ← teaches(x, y), teaches(z1, y)

Maurizio Lenzerini Query rewriting for OBDA The findability challenge 2012 (25/58)

Query answering in DL-LiteA: Query rewriting (cont’d)

We now have the query

q(x) ← teaches(x, y), teaches(z, y)

The PI Professor v ∃teaches
as a logic rule: teaches(z1, z2) ← Professor(z1)

does not apply to teaches(x, y) nor teaches(z, y), since y is a join
variable.
However, we can transform the above query by unifying the atoms
teaches(x, y), teaches(z, y). This rewriting step is called reduce, and
produces the following query

q(x) ← teaches(x, y)

We can now apply the PI above (σ{z1/x, z2/y}), and add to the
reformulation the query

q(x) ← Professor(x)

Maurizio Lenzerini Query rewriting for OBDA The findability challenge 2012 (26/58)

Query answering in DL-LiteA: Query rewriting (cont’d)

Algorithm PerfectRef (q, TP)
Input: conjunctive query q, set of DL-LiteA PIs TP
Output: union of conjunctive queries PR
PR := {q};
repeat

PR′ := PR;
for each q ∈ PR′ do
(a) for each g in q do

for each PI I in TP do
if I is applicable to g
then PR := PR ∪ { q[g/(g, I)] }

(b) for each g1, g2 in q do
if g1 and g2 unify
then PR := PR ∪ {τ(reduce(q, g1, g2))};

until PR′ = PR;
return PR

Maurizio Lenzerini Query rewriting for OBDA The findability challenge 2012 (27/58)

Answering by rewriting in DL-LiteA: The algorithm

1 Rewrite the CQ q into a UCQs: apply to q in all possible ways the
PIs in the TBox T .

2 This corresponds to exploiting ISAs, role typings, and mandatory
participations to obtain new queries that could contribute to the
answer.

3 Unifying atoms can make applicable rules that could not be applied
otherwise.

4 The UCQs resulting from this process is the perfect rewriting rq,T .

Maurizio Lenzerini Query rewriting for OBDA The findability challenge 2012 (28/58)

Query answering in DL-LiteA: Example

TBox: Professor v ∃teaches
∃teaches− v Course

Query: q(x)← teaches(x, y),Course(y)

Perfect Rewriting: q(x)← teaches(x, y),Course(y)
q(x)← teaches(x, y), teaches(z, y)
q(x)← teaches(x, z)
q(x)← Professor(x)

M(S): teaches(John, databases)
Professor(Mary)

It is easy to see that the evaluation of rq,T over A in this case produces
the set {John, Mary}.

Maurizio Lenzerini Query rewriting for OBDA The findability challenge 2012 (29/58)

Query answering for OBDA

Based on query rewriting – given an (U)CQ q, and J = 〈T ,S,M〉:
1 Perfect reformulation: rewrite q into the perfect reformulation qT

of q w.r.t. T , which turns out to be a UCQ – qT is such that
cert(q, 〈T ,S,M〉) = cert(qT , 〈∅,S,M〉)

2 Unfolding: compute the rewriting qT ,M of qT w.r.t. M, which is
a query over S – qT ,M is such that cert(qT , 〈∅,S,M〉) = qST ,M

3 Evaluation: evaluate qT ,M over the source database S.

Ontology
Rewriting

q
O

qO Mapping
Rewriting

S

M

qO,M

Query
Evaluation

cert(q,J)

Complexity: AC0 in the size of the database S, in fact FOL-rewritable.

Maurizio Lenzerini Query rewriting for OBDA The findability challenge 2012 (30/58)

Complexity

n : query size

m : number of predicate symbols in T or query q

The number of distinct conjunctive queries generated by the algorithm
is less than or equal to (m× (n+ 1)2)n, which corresponds to the
maximum number of executions of the repeat-until cycle of the
algorithm.

Query answering for CQs and UCQs is:

PTime in the size of TBox.

AC0 in the size of the M(S).

Exponential in the size of the query.

Can we go beyond DL-LiteA and remain in AC0?

By adding essentially any other DL construct (without limitations) we
lose this nice computational properties.

Maurizio Lenzerini Query rewriting for OBDA The findability challenge 2012 (31/58)

Complexity counts

Maurizio Lenzerini Query rewriting for OBDA The findability challenge 2012 (32/58)

Sources of complexity

For realistic ontologies, systems based on PerfectRef works for queries
with at most 7-8 atoms.

Two sources of complexity wrt query:

conjunctive query evaluation is NP-complete – complexity comes
from the need of matching the query and the data
; unavoidable!

the rewritten query has exponential size wrt the original query –
complexity comes from the need of comparing the query and the
ontology
; avoidable?

Maurizio Lenzerini Query rewriting for OBDA The findability challenge 2012 (33/58)

Avoiding exponential blow-up: first attempt

Idea: avoid rewriting whatsoever!

Unfortunately, this idea does not work:

Theorem (Calvanese et al, JAR 2007)

Given M(S), there is no database B such that for every query q,
cert(q, 〈T ,S,M〉) = qB

Maurizio Lenzerini Query rewriting for OBDA The findability challenge 2012 (34/58)

Avoiding exponential blow-up: second attempt

Presto [Rosati, KR 2010] is the current rewriting algorithm used in
Mastro , based on the following ideas for improving the performance of
PerfectRef :

centering the rewriting around the query variables rather than the
query atoms – this allows for

collapsing sequences of rewriting steps into single steps and
dramatically pruning the solution space of the algorithm

going beyond the disjunctive normal form (UCQ) of the rewritten –
query nonrecursive datalog queries are produced

Maurizio Lenzerini Query rewriting for OBDA The findability challenge 2012 (35/58)

Avoiding exponential blow-up: second attempt

Presto replaces the “atom-rewrite” and “reduce” rules of PerfectRef
with a rule (based on MGS) that eliminates existential join variables,
where elimination of an existential join variable means that the variable
turns into a non-join existential variable (through unification steps)

This makes the rewriting produced by Presto exponential with respect
to the number of eliminable existential join variables in the query
(notice: in practice, very often the majority of existential join variables
in a CQ are not eliminable)

Previous algorithms produce rewritings whose size is exponential with
respect to the number of atoms in the conjunctive query

; dramatic reduction of the size of the query generated. Presto can
handle queries with about 30 atoms.

Maurizio Lenzerini Query rewriting for OBDA The findability challenge 2012 (36/58)

Avoiding exponential blow-up: second attempt

Ontology Query ID Number of rules/CQs of the generated query Time (msec) to generate the query
QPerfRef Requiem RequiemF RequiemG PRESTO QPerfRef Requiem RequiemF RequiemG PRESTO

V Q1 15 15 15 15 16 1 1 1 15 1
V Q2 10 10 10 10 11 31 15 15 15 15
V Q3 72 576 72 72 28 47 328 655 468 15
V Q4 185 185 185 185 43 94 78 125 125 15
V Q5 30 30 30 30 14 140 16 31 15 16
V Q6 1850 1850 1850 1850 53 920 2341 6428 8909 15
V Q7 7200 7200 7200 7200 83 3323 36596 114599 327463 15
S Q1 6 6 6 6 7 1 1 1 15 1
S Q2 2 160 2 2 3 1 109 140 47 1
S Q3 4 480 4 4 5 46 1248 1779 171 1
S Q4 4 960 4 4 5 16 2341 3463 47 15
S Q5 8 2880 8 8 7 47 51481 75349 296 16
S Q6 8 8 9 32 60153 16
S Q7 16 16 12 78 164611 16

P1 Q1 2 2 2 2 3 15 1 1 1 1
P1 Q2 2 2 2 2 3 16 1 1 1 1
P1 Q3 2 2 2 2 3 31 1 1 1 1
P1 Q4 2 2 2 2 3 32 15 16 16 1
P1 Q5 2 2 2 2 3 47 15 16 31 15
P1 Q6 2 32 2 32 3 94 7098 7286 7238 15
P1 Q7 2 64 2 64 3 171 168379 172549 172218 16

P5X Q1 10 14 14 14 11 15 16 16 15 1
P5X Q2 50 77 25 25 16 46 46 63 63 1
P5X Q3 250 390 58 58 16 125 297 499 639 15
P5X Q4 1254 1953 179 179 16 749 6476 12247 16880 15
P5X Q5 6330 9766 718 718 16 7239 223955 427426 567713 15
P5X Q6 32338 16 114233 16
P5X Q7 16 16

Maurizio Lenzerini Query rewriting for OBDA The findability challenge 2012 (37/58)

Avoiding exponential blow-up: second attempt

Ontology Query ID Number of rules/CQs of the generated query Time (msec) to generate the query
QPerfRef Requiem RequiemF RequiemG PRESTO QPerfRef Requiem RequiemF RequiemG PRESTO

A Q1 558 114 27 27 69 171 62 94 78 1
A Q2 1739 74 50 50 52 592 47 63 94 1
A Q3 4741 104 104 104 55 2200 94 140 374 15
A Q4 6589 285 224 224 93 2340 156 234 374 15
A Q5 66068 624 624 624 71 35365 672 1248 2247 16
A Q6 2496 2496 2496 91 9221 18799 36443 15
A Q7 131 31
U Q1 5 2 2 2 6 1 1 1 1 1
U Q2 1 148 1 1 1 1 78 93 47 1
U Q3 12 224 4 4 8 31 156 234 15 16
U Q4 5 1628 2 2 6 1 1998 4430 78 16
U Q5 25 2960 10 10 11 31 9953 18157 297 16
U Q6 40 2368 16 16 14 47 7322 14238 725 16
U Q7 560 33152 224 28 296 1734331 121888 16

[Calvanese et al, DL 2011] show how to exploit knowledge about
inclusion dependencies on M(S) in order to produce more compact
rewritings

Prexto [Rosati, ESWC 2012] applies this idea to Presto.

Maurizio Lenzerini Query rewriting for OBDA The findability challenge 2012 (38/58)

Avoiding exponential blow-up: another observation

In the worst case, Presto still rewrites into a union of conjunctive
queries of exponential size wrt the original query

Is it avoidable?

Theorem (Kikot et al, DL 2011)

Cheking whether ~t ∈ cert(q, 〈T ,M,S〉) is NP-complete in combined
complexity, even if T is in DL-LiteR, and M(S) is constituted by just
one atomic assertion A(c).

Since answering a FOL query over a database A(c) can be done in linear
time, it follows that no algorithm can construct a FOL rewriting in
polynomiaml time, unless P = NP.

Maurizio Lenzerini Query rewriting for OBDA The findability challenge 2012 (39/58)

Avoiding exponential blow-up: other attempts

Polynomial FOL rewritings exist in the case of DL-Litecore

(DL-LiteR without role inclusions) [Kikot et al, DL 2011].
Unfortunately, our experience shows that role inclusions are very
important for modeling real-world domains

Polynomial rewritings exist if we allow rewriting to be expressed in
nonrecursive Datalog queries [Gottlob and Schwentick, DL 2011].
Unclear whether this has a practical application.

Once you accept to rewrite in a language going beyond FOL, then
it makes sense to look at more expressive ontology languages (i.e.,
EL, Datalog+-)

Maurizio Lenzerini Query rewriting for OBDA The findability challenge 2012 (40/58)

Conclusions

Is “first-order rewritability” a real limit that cannot be surpassed by
data-intensive ontologies? ; real issue (open research problem).

Our opinion:

FOL rewritability = reuse of relational database technology for query
processing
more expressive ontology/query languages necessarily require
support for (at least linear) recursion
currently, there is no available technology for recursive queries
(notwithstanding with negation interpreted under the stable model
semantics) that is comparable to SQL technology

Many research challenges remain (i.e., rewriting wrt mappings,
updates, service and process management, etc.)

Maurizio Lenzerini Query rewriting for OBDA The findability challenge 2012 (41/58)

