
A Functional Model for Data Analysis

Nicolas Spyratos
Laboratoire de Recherche en Informatique

Universite Paris Sud 11
France

2

«The quest for knowledge used to begin with grand theories. Now it begins with
massive amounts of data. Welcome to the Petabyte Age »
(WIRED, July 2008)

in several fields data is accumulated over long periods of time and analyzed in order to
discover tendencies, outliers, potential problems etc. (cf. business intelligence, dashboards, …)

the data to be analyzed often comes from several possibly heterogeneous sources
therefore it has to be ‘homogenized’ before analysis takes place (cf data warehousing)

3

Extractor

Integrator

Data Mart

source
…

Extractor
database

source
. . .

. . .

End User

End User

End User

sources data warehouse access levelExtract/Transform/Load (ETL)

some facts relevant to my talk:
• the data warehouse is usually implemented as a relational database
• its schema is usually not normalized (usually a ‘star schema’)
• the query language consists mostly of group by queries
• the record based storage of the relational model doesn’t seem to fit well the needs of data analysis
• due to the very large data volumes reuse of query results becomes important

my talk concerns the last two points:
• a functional data model and a language of analytic queries, in which it’s possible to study query
rewriting (including in presence of constraints)

 the functional data model that we use is the one proposed by Buneman and Fraenkel

Data Warehousing

4

the basic concepts through examples

Assume a digital document collection, each document being identified by a URI and described
by its subject and number of hits. To compute the total number of hits per subject we can
proceed as follows:

group the documents by subject (using the function s)
measure the number of hits (by applying the function h)
aggregate the measures in each group (using the operation sum)

URI HitsSubject
s h

1
2
3
4
5
6
7

drama

poetry

novel

200
100
200
400
100
400
100

300

600

600

TotHits

5

1
2
3
4
5
6
7

drama

poetry

novel

200
100
200
400
100
400
100

300

600

600

URISubject
s

Hits
h

TotHits
sum

… and the end result of the query is a function from Subject to TotHits:

drama
poetry
novel

300
600
600

Subject TotHits answer
signature

answer
extension

Query Q

query
evaluation
over the
function
extensions

so an analytic query Q is a triple of functions such as <s, h, sum>
and the answer is a function as well, namely ansQ: target(s)target(sum)

more formally, grouping, measuring and aggregation needs three functions:

ansQ

6question: what if we had a combination of grouping functions?
answer: replace them by one function and do as before!

URI Hits

Subject

s

h

Author

a

URI Hits

Subject x Author

s∧a

h

URI
Hits

a

h

Author

Nationality

n

URI
Hits

h

Nationality

n∘a

in general:
• we combine functions using four operations : pairing, composition, projection, restriction
• and we use combinations of functions to form analytic queries such as <n∘a, h, sum>

7Information Integration
data warehousingthe model – schema (or what are the functions that one can combine) :

oriented, labeled, acyclic, connected graph in which
• there is a single root (modeling the objects to be analyzed),
• each node is associated with a set of values (or domain, as in the relational model)
• all arrow labels are distinct (thus allowing for “parallel” arrows)

URI
Subject s

Hits
h

Author aNationality

the successors of the root are the attributes of the objects modeled by the root, while the
remaining nodes are attribute dependent indicators to be used in the analyses

 in fact the (reduced) set of functional dependencies in a relational BCNF table leads
directly to such a schema (simply choose a key as root and add indicators)

n

8another example of schema:
a catering company delivering various products to a number of stores

(O represents delivery invoice numbers)

Month

Region

O

City

Date Quantity

ProductStore

Category Supplier

ff1

g

g1

g2

h

h1 h2

q

9Information Integration
data warehousing

URI
Subject s

Hits
h

Author a
n

Nationality

the model – database
a mapping δ that associates
• each node A with a finite subset δ(A) of its domain
• each arrow f: AB with a finite total function δ(f): δ(A) δ(B)
(i.e. a database is a set of finite function extensions - one for each arrow in the schema)

URI Author

1 A1

2 A2

3 A1

4 A3

5 A4

6 A1

7 A2

URI Hits

1 200

2 100

3 200

4 400

5 100

6 400

7 100

URI Subject

1 drama

2 drama

3 poetry

4 poetry

5 novel

6 novel

7 novel

Author Nationalitity

A1 French

A2 German

A3 Greek

A4 French

A S H N

Schema
(set of function
signatures)

Database
(set of function
extensions)

 could be represented directly in MonetDB

10the model – functional algebra

f g

g∘f

pairing
(join)

f

g
f∧g(x)= <f(x), g(x)>

Y

Z

f∧gX

restriction
(selection)

f f/D f/D(x)= f(x) ∀x∈D

Ai
πi (a1, .. , ai)= ai

composition
(join + projection)

X Y g∘f(x)=g(f(x))Z

Y×Z

D⊆X , X Y D Y

projection
(projection)

A1 × … ×An

f

g

Y

Z

f∧gX Y×Z

πY

πZ

πY∘(f∧g)= f

πZ∘(f∧g)= g

the operations of this algebra are tied together by a fundamental property:

11Information Integration
data warehousingthe model – path expression:

a well formed expression whose operands are arrows of the schema and whose operations
are those of the functional algebra
Ex: s, nos, s∧a, s∧(noa), …….

every node A is equipped with two “extreme” path expressions: πA and π∅
(evaluated as identity function and constant function over A, respectively, assuming δ(A) nonempty)

evaluation of path expression e w.r.t. database δ:
the result of replacing each arrow in e by the corresponding database function and
performing the indicated operations (the result is always a function)

URI
Subject s

Hits
h

Author a
n

Nationality

12

Information Integration
data warehousing

Ex: Q= <s∧(noa), h, sum> asks for total hits by subject and author nationality

the model – analytic query:
triple Q= <c, m, op>, where c, m are path expressions with common source, and op an
operation over the target of m
c is called the classifier or grouping function, m the measure and op the aggregate operation

evaluation of the analytic query Q=<c, m, op> is done in two steps:
1/ evaluate c and m to obtain two functions with common source (call them c and m as well)
2/ for each y in range(c) do

begin Group: compute the inverse c-1(y) { let c-1(y) = {x1, …, xr}}
Measure: for each x∈ c-1(y) compute m(x) {this step returns a tuple t(y)= < m(x1), …, m(xr)>}
Aggregate: apply the operation op to the tuple t(y) {call the result op(t(y))}
Answer define ansQ(y)= op(t(y)

end

answer signature: ansQ: target(c)  target(op)
Ex: Q= <s∧(noa), h, sum> ansQ: Subject×Nat TotHits

URI
Subject s

Hits
h

Author a
n

Nationality

13

Information Integration
data warehousing

remarks on the definition of an analytic query:

• the grouping function is formed by composing along one or more paths then pairing,
eventually restricting along the nodes of each path (“where” clause of group by)

• the answer to a query being a function, it can be restricted to a subset of its domain
(“having” clause of group by)

• in the answer signature ansQ: target(c)  target(op), the attributes in target(c) appear in the
schema while target(op) does not. As a consequence we can introduce a name for target(op), by
indicating it when we specify the query, e.g. <s, h, sum>/TotHits (“as” in the select clause of group by)

• the roles of c and m in a query can be interchanged (with a possible change in the operation)
Ex: Q= <s, h, sum> versus Q’= <h, s, count>

URI
Subject s

Hits
h

Author a
n

Nationality

14

reasoning in the model

• query result exploration

• reusing query results
comparing queries
rewriting a query in terms of another (comparable) query
managing a cache for reusing query answers

15

reasoning in the model- query result exploration

the basic idea:
a query answer being a function, it might have more than one equivalent representations

Example:

Q=<s∧a, h, sum>
ansQ: Subject×Author TotHits

(Subject×Author TotHits) ≡ (Subject  (AuthorTotHits))
≡ (Author  (SubjectTotHits))

such equivalences are useful for exploring result visualizations

URI
Subject s

Hits
h

Author a
n

Nationality

16

STORE PROD MONTH TOTAL
SALES

St1 Prod1 Jan 103
St1 Prod1 Feb 204
St1 Prod1 March 251
… … … …

evaluation result

StorexProdxMonth →Total sales

result visualization

St
1

St
2

Jan Feb

products

To
ta

l s
al

es

StorexProdxMonthTot ≡ StorexMonth(ProdTot)

Store and Month
act as grid parameters
each cell showing total
sales by product

17

St
1

St
2

Prod1 Prod2

month

To
ta

l s
al

es

STORE PROD MONTH TOTAL
SALES

St1 Prod1 Jan 103
St1 Prod1 Feb 204
St1 Prod1 March 251
… … … …

evaluation result

Store and Product
act as grid parameters
each cell showing total
sales by month

StorexProdxMonthTot ≡ StorexProd(MonthTot)

result visualization

18

reasoning in the model- reusing query results

consider two analytic queries, Q=<c, m, op> and Q’ =<c’, m, op>

their grouping functions can be ordered (up to equivalence) :
c ≼ c’ iff c(o)=c(o’) entails c’(o)=c’(o’)
c≡c’ iff c ≼ c’ and c’ ≼ c

1

2

3

4

5

6

7

8

a1

a2

a3

a4

c
c’ x

y

c ≤ c’ as each group of c
is contained in a group of c’

19

claim:
given two queries Q= <c, m, op> and Q’= <c’, m, op>,
if c ≼ c’ then Q’ can be evaluated using the answer of Q (for most common operations)

there remains one question: how can we tell whether c ≼ c’

1
2

3
4
5

8
9

6
7

1
2
3
4
5

6
7
8
9

200

120

350

200

200+120 = 320

350+200 = 550

evaluation of Q evaluation of Q’ from the answer of Q

20

basic fact:
f≼g iff there is h s.t. hof= g (it follows that: f ≼ gof, f∧g ≼ f)

it turns out that all comparisons between two classifiers fall into one of the following cases:

Case 1: fno…of1 ≼ gmo…og1 iff there is h s.t. ho(fno…of1)= gmo…og1

Case 2: f1∧… ∧ fn ≼ g1∧… ∧ gm iff ∀gi ∃ sub-pairing si=fj1∧… ∧ fji s.t. si≼gi ∀i

Case 3: fno…of1 ≼ g1∧… ∧ gm iff fno…of1 ≼gi ∀i

Case 4: f1∧… ∧ fn ≼ gmo…og1 iff there is sub-pairing s of f1∧… ∧ fn s.t. s≼ gmo…og1

21

the basic rewriting rule: Q= <eoe’, m, op> = <e, <e’, m, op>, op>
(with the understanding that <e’, m, op> is to be evaluated before <eoe’, m, op>)

URI
Subject s

Hits
h

Author a
n

Nationality

Ex:
let Q=<a, h, sum> (total hits by author), Q’=<noa, h, sum> (total hits by nationality)
then Q’= <noa, h, sum>= <n, ansQ, sum> = <n, <a, h, op>, op> (but notice the change of origin)

ansQ
TotHits

assuming c ≼ c’ how can we rewrite Q’ so that to reuse the result of Q

the basic idea:
the answer to a query being a function, it can be used as a measure in any ‘larger’ query

22

examples

Month

Region

O

City

Date Quantity

ProductStore

Category

Supplier

ff1

g

g1

g2

h

h1 h2

q

< g2og1og, q, sum>= < g2, <g1og, q, sum> , sum>= < g2, <g1 , <g, q, sum>, sum>, sum>
= <g2og1, < g, q, sum>, sum>

<f, q, sum> = <πfo(f∧g), q, sum>, sum>= <πf, <f∧g, q, sum>, sum>= <πf, <f∧h, q, sum>, sum>
= <πfo(f∧h), q, sum>, sum>= <πf, <f∧h, q, sum>, sum>= <πf, <f∧h, q, sum>, sum>

which of the possible rewritings will be used depends on the contents of the cache

23

exploiting constraints during rewriting

Month

Region

O

City

Date Quantity

ProductStore

Category

Supplier

ff1

g

g1

g2

h

h1 h2

q

s

assume the following integrity constraint: g1og = soh2oh (suppliers supply only stores in their own city)
then we have several possibilities of rewritings:

< g2og1og, q, sum>= < g2, <g1og, q, sum> , sum>= < g2, <g1 , <g, q, sum>, sum>, sum> = ……
= < g2, < soh2oh, q, sum>, sum>= < g2, < soh2, <h, q, sum>, sum>= …..

such constraints can appear as restrictions within a query and not at schema level
(if so, they can be used only for the rewriting of that particular query)

constraints can also be introduced by indicators that depend on two or more attributes

24

reusing query results - how can we optimize cache management?

if a query Q’= <c’, m, op> is submitted to the system then do the following:

if there is query Q= <c, m, op> with c ≼ c’ and ansQ is in the cache
then begin rewrite Q’ as Q”= <h, ansQ , op>;

evaluate Q’’ at target(c);
return ansQ’’

{in case of multiple, equivalent such Q a choice must be made}
end

else begin evaluate Q’’ at source(c’);
store ansQ’ in the cache;
return ansQ’

end

 the cache always contains answers of queries that are pair wise incomparable

25

concluding remarks

• the model we have seen can be mapped to relational star schema

• limited experimention with the model (KP-Lab, Assets)

26

visual formulation of queries

Q=<s∧(noa), h, sum> can be specified as <{Subject, Nationality}, {Hits}, Sum>

key observation
if the schema is a tree then to formulate an analytic query it is sufficient to
give the targets for grouping and measuring plus the aggregate operation

if the schema is represented graphically with clickable nodes then Q can be formulated
visually:

click on Subject; click on Nationality end
(at this point the system infers the grouping function)
click on Hits end
(at this point the system infers the measuring function and puts the allowed operations in a pop-up menu)
click on Sum end
(at this point the system constructs the analytic query)

URI
Subject s

Hits
h

Author a
n

Nationality

27

E
E N D

D

