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Information integration: general definition

The goal of information integration is to provide a unified and
transparent view to a collection of data stored in multiple, autonomous,
and heterogeneous data sources.

The unified view is achieved through a target schema (or, global
schema), and is realized either through

a materialized database – data exchange, or data warehousing

a virtualization mechanism based on querying – virtual data
integration, or simply data integration

a mapping mechanism among a set of networked peers –
peer-to-peer data exchange and integration
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Data integration architecture

Target view

Source
1

Source
2

Source
3

Mapping

Data sources

Service

Recurring theme: choosing the right language for queries, target
schema, mapping assertions.
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The distingushing feature of data integration

Other methods/techniques for distributing/moving/merging data:

Distributed database systems,

Data replication,

ETL (Extraction, Trasformation and Loading)

Data federation

Data mash-up

Distinguishing feature

A data integration system is based on a structure accomodating data in
the target view, and such a structure should be

declaratively specified,

decoupled from the sources,

linked to the sources by means of mappings.
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Ontology-based data integration

In OBDI, the target schema is expressed in terms of an ontology.

An ontology-based data integration system is a triple 〈O,S,M〉, where

O is the ontology, expressed as a TBox in OWL 2 DL (or its DL
counterpart SROIQ(D))

S is the source database

M is a set of GLAV mapping assertions, each one of the form

Φ(~x) ; Ψ(~x)

where

Φ(~x) is a query over S, returning values for ~x
Ψ(~x) is a query over O, whose free variables are from ~x.
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Semantics

Let I= (∆I , ·I) be an interpretation for the ontology O.

Def.: Semantics

I= (∆I , ·I) is a model of J = 〈O,S,M〉 if:

I is a model of O;

I satisfies every assertion in M wrt S, where I satisfies the
assertion Φ(~x) ; Ψ(~x) wrt a database S, if the sentence

∀~x (Φ(~x) → Ψ(~x))
is true in I ∪ S.

Def.: The certain answers to a UCQ q(~x) over J = 〈O,S,M〉

cert(q,J ) = { ~c I ∈ qI | for every model I of J }
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Some challenges

Challenges depending on the existence of the target structure and its
decoupling from the sources:

Incompleteness (data do not adhere to the target schema because
of lack of data)

Inconsistency (data do not adhere to the target schema because of
contradictions)

Acquisition of intensional knowledge from the sources

We will address these challenges in the context of ontology-based data
integration
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Query answering under incomplete informstion

Example

O:

University v ∃HasRector

M:

R1(x,y,z) ; University(x)
R2(x,y,z,w) ; HasRector(x,z)

Query: { x | ∃y University(x) ∧ HasRector(x, y) }

The problem of answering queries under incomplete information shows
up
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Query language for user queries

Answering FOL queries is undecidable, even if the ontology is
empty, and the set of mappings are very simple.

Unions of conjunctive queries (UCQs) do not suffer from this
problem.

We can go beyond unions of conjunctive queries, but we have to
carefully choose the semantics of nonmonotonic queries.
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Query languages for the mappings

O lhs of M rhs of M Query language Query answering

∅ single atom FOL single atom undecidable (1)

∅ single atom UCQ single atom NP-complete (2)

∅ FOL CQ UCQ AC0 (3)

(1) (Abiteboul & Duschka, PODS’98)
(2) (van Der Meyden, TCS’93; Abiteboul & Duschka, PODS’98)
(3) (Duschka & Genesereth, PODS’97; Pottinger & Levy VLDBJ 2001)

We measure the computational complexity of query answering with respect to
the size of the data S

Note: AC0 ⊆ LogSpace, and going beyond LogSpace means going beyond
relational databases
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Query answering in Description Logic Ontologies

DL Data complexity of query answering

SROIQ(D) ? (1)

SHIQ(D) coNP-complete (2)

? PTIME (3)

? AC0 (3)

(1) It is in fact open whether answering CQs over OWL 2 DL (i.e.,
SROIQ(D)) ontologies is decidable.

(2) (Hustadt & al., IJCAI’05; Glimm & al., JAIR’08; Ortiz & al., JAIR’08). In
fact, (Calvanese & al., KR’06) show coNP-hardness for very simple languages
(fragments of OWL 2 DL) allowing for union.

(3) Question: Are there significative fragments of OWL 2 DL for which
answering CQs is tractable/has the same complexity as SQL query evaluation?
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Tractable Ontology Languages

Three polynomially tractable profiles of OWL 2 DL:

OWL 2 QL (DL-LiteR, one of the members of the DL-Lite family)
OWL 2 EL
OWL 2 RL

Datalog+-

Weakly acyclic TGDs

...
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DL-LiteR: example

name: String
age: Integer

Faculty

 

 
 
Professor

 
 
AssocProf

 

Dean

1..1

1..*

isAdvisedBy

 
name: String

College
1..*

1..1

1..1

worksFor

isHeadOf

1..*

{disjoint}

Professor v Faculty
AssocProf v Professor

Dean v Professor
AssocProf v ¬Dean
∃worksFor v Faculty
∃worksFor− v College

Faculty v ∃worksFor
College v ∃worksFor−

∃isHeadOf v Dean
∃isHeadOf− v College

Dean v ∃isHeadOf
College v ∃isHeadOf−

isHeadOf v worksFor

...

UML attributes can be captured considering the extension of DL-LiteR to data
properties.
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Query answering in DL-LiteR

Based on query rewriting – given an (U)CQ q, and J = 〈O,S,M〉:
1 Perfect reformulation: rewrite q into the perfect reformulation qO

of q w.r.t. O, which turns out to be a UCQ – qO is such that
cert(q, 〈O,S,M〉) = cert(qO, 〈∅,S,M〉)

2 Unfolding: compute the rewriting qO,M of qO w.r.t. M, which is
a query over S – qO,M is such that cert(qO, 〈∅,S,M〉) = qSO,M

3 Evaluation: evaluate qO,M over the source database S.

Ontology
Rewriting

q
O

qO Mapping
Rewriting

S

M

qO,M

Query
Evaluation

cert(q,J)

Complexity: AC0 in the size of the database S, in fact FOL-rewritable.
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Beyond DL-LiteR: results on data complexity

lhs rhs funct.
Prop.
incl.

Data complexity
of query answering

0 DL-LiteA,id −
√

in AC0

1 A | ∃P .A A − − NLogSpace-hard
2 A A | ∀P .A − − NLogSpace-hard
3 A A | ∃P .A

√
− NLogSpace-hard

4 A | ∃P .A | A1 uA2 A − − PTime-hard
5 A | A1 uA2 A | ∀P .A − − PTime-hard
6 A | A1 uA2 A | ∃P .A

√
− PTime-hard

7 A | ∃P .A | ∃P−.A A | ∃P − − PTime-hard
8 A | ∃P | ∃P− A | ∃P | ∃P−

√ √
PTime-hard

9 A | ¬A A − − coNP-hard
10 A A | A1 tA2 − − coNP-hard
11 A | ∀P .A A − − coNP-hard

DL-LiteA,id is the most expressive DL of the DL-Lite family

NLogSpace and PTime hardness holds already for instance checking.

For coNP-hardness in line 10, a TBox with a single assertion
AL v AT tAF suffices! ; No hope of including covering constraints.
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The problem of inconsistency

The problem is that query answering based on classical logic becomes
meaningless in the presence of inconsistency (ex falso quodlibet)

One popular approach to dealing with inconsistency in data warehousing
is data cleaning, but in OBDI data cleaning is unfeasible

Question

How to handle classically-inconsistent data integration systems in a
meaningful way?
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The notion of repair

Definition

A repair r of a database D under integrity constraints IC is a database
(over the same schema) such that:

r |= IC,

there is no database r′ such that r′ |= IC, and r′ is preferred to r,
relative to some preference order.

Several preference orders have been proposed, based on:

symmetric difference

cardinality

value modification

metric distance

...
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Inconsistent-tolerant semantics

Let M(S) denote the the minimal universal solution of M with respect
to S.

Example

Consider J = 〈O,M,S)〉, with O:

{Mechanic v TeamMbr, Driver v TeamMbr, ∃drives v Driver,

∃drives− v Car, Driver v ¬Mechanic}

and

M(S) = { Driver(felipe), Mechanic(felipe),TeamMbr(felipe),
drives(felipe, ferrari) }.
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Inconsistent-tolerant semantics

Intuitively, a repair for 〈O,S,M〉 is an ABox (set of ground facts) AR

such that 〈O,AR〉 is satisfiable, and AR “minimally” differs from
M(S).

Definition (Repair)

A repair of 〈O,S,M〉 is a set A of extensional assertions such that:

1 A ⊆M(S)
2 Mod(〈O,A〉) 6= ∅
3 no A′ exists such that

A ⊂ A′ ⊆M(S), and
Mod(〈O,A′〉) 6= ∅.

The set of repairs for 〈O,S,M〉 is denoted by Rep(〈O,S,M〉).
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Inconsistent-tolerant semantics

Example

O = {Mechanic v TeamMbr, Driver v TeamMbr, ∃drives v Driver,

∃drives− v Car, Driver v ¬Mechanic}

M(S) = { Driver(felipe), Mechanic(felipe),TeamMbr(felipe),
drives(felipe, ferrari) }.

Rep(J ):

r1={Driver(felipe), drives(felipe, ferrari),TeamMbr(felipe)};
r2={Mechanic(felipe),TeamMbr(felipe)}.
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Inconsistent-tolerant semantics

Example

O = {Mechanic v TeamMbr, Driver v TeamMbr, ∃drives v Driver,

∃drives− v Car, Driver v ¬Mechanic}

M(S) = { Driver(felipe), Mechanic(felipe),TeamMbr(felipe),
drives(felipe, ferrari) }.

Rep(J ):

r1={Driver(felipe), drives(felipe, ferrari),TeamMbr(felipe)};
r2={Mechanic(felipe),TeamMbr(felipe)}.

J |=R TeamMbr(felipe)
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Inconsistent-tolerant semantics

Problems:

Many repairs in general

What is the complexity of reasoning about all such repairs?

Proposition

Let 〈O,S,M〉 be an OBDIS, and let α be a ground fact. Deciding
whether 〈O,S,M〉 |= α in all possible repairs is coNP-complete with
respect to data complexity.

Idea

Take the intersection of all repairs, and consider the set of models of
such intersection as the semantics of the system (When in Doubt,
Throw It Out – WIDTIO).
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Inconsistent-tolerant query answering

A tractable method for answering queries posed to J = 〈O,S,M〉
according to the WIDTIO semantics:

Avoid computing the intersection, and rewrite the query q into q′ in
such a way that J |=WIDTIO q is equivalent to J |= q′.

In our setting, with DL-LiteR:

problem R-semantics WIDTIO-semantics

single atom query coNP-complete in AC0

UCQ answering coNP-complete in AC0
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Example

Source S:

T-CarTypes

Code Name

T1 Coupé

T2 SUV

T3 Sedan

T4 Estate

T-Cars

CarCode CarType EngineSize BreakPower Color TopSpeed

AB111 T1 2000 200 Silver 260

AF333 T2 3000 300 Black 200

BR444 T2 4000 400 Grey 220

AC222 T4 2000 125 Dark Blue 180

BN555 T3 1000 75 Light Blue 180

BP666 T1 3000 600 Red 240
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Motivating example

Source S:
T-CarTypes

Code Name

T1 Coupé
T2 SUV
T3 Sedan
T4 Estate

T-Cars

CarCode CarType EngineSize BreakPower Color TopSpeed

AB111 T1 2000 200 Silver 260
AF333 T2 3000 300 Black 200
BR444 T2 4000 400 Grey 220
AC222 T4 2000 125 Dark Blue 180
BN555 T3 1000 75 Light Blue 180
BP666 T1 3000 600 Red 240

Mapping M:

true ; Car v Vehicle

{y | T-CarTypes(x, y)}; y v Car

{(x, v, z) | T-Cars(x, y, t, u, v, q) ∧ T-CarTypes(y, z)}; z(x)

{(x, y) | T-CarTypes(z1, x) ∧ T-CarTypes(z2, y) ∧ x 6= y}; x v ¬y

The ontology O is defined through M and S.
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Higher-order Description Logics

Technically, we need higher-order logic – Hi(DL-LiteR)

We also need higher-order queries, such as:

Example

Interesting queries that can be posed to 〈S,M〉 exploit the higher-order
nature of the system:

Return all the instances of Car, each one with its own type:
q(x, y) ← y(x), Car(x)
Return all the concepts which car AB111 is an instance of:
q(x) ← x(AB111)
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Mapping both extensional and intensional knowledge

We denote by MA the part of the mapping assertions with extensional
assertions in the rhs.

Proposition

Let K = 〈S,M〉 be a Hi(DL-LiteR) OBDIS, and let Q be an instance
higher-order UCQ. Deciding whether K |= Q is in AC0 with respect to
the size of MA, is in PTIME with respect to the size of M\MA, and
is NP-complete with respect to the size of K ∪Q.
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Many other challenges

Methodology to build data integration systems

How to write “good” ontologies
How to write “good” mappings

Tools supporting data integration

Design time
Run time (query optimization)

Privacy preserving query answering

Object identification (record matching)

Other types of mapping languages?

Other inconsistent tolerant semantics?

Updates/services/processes on the target schema?

...
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