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 Big Data Processing
◦ TB or PB of data (scientific, sensors, …)
◦ Efficiency

 High-level Data Languages
◦ Languages to easily express data operations
◦ Semantics

 (Query) optimization
◦ Reconciling efficiency and semantics



 Hadoop
◦ Open source software for reliable, scalable, distributed computing
◦ Won Jim Gray’s Terabyte Sort Benchmark in 2008 (209 seconds)

 Google Map-Reduce
◦ Jim Gray’s Terabyte Sort Benchmark in 68 seconds in 2009

 PNUTS (Yahoo! Research)
◦ Massively parallel & geographically distributed database system

 Pegasus
◦ Scientific workflows on the Grid

 Dryad (Microsoft Research)
◦ General-purpose distributed execution engine for coarse-grain 

data-parallel applications



 Hive-QL
◦ SQL-Like

 Pig-Latin 
◦ Dataflow language

 Mashups
◦ Yahoo! pipes
◦ MashQL



 Hive-QL is based on SQL

CREATE TABLE page_view(
viewTime INT, 
userid BIGINT, 
page_url STRING, 
referrer_url STRING, 
ip STRING COMMENT 'IP Address of the User') 

COMMENT 'This is the page view table' 
PARTITIONED BY(

dt STRING, 
country STRING) 

STORED AS SEQUENCEFILE;
INSERT OVERWRITE TABLE xyz_com_page_views
SELECT page_views.* 
FROM page_views
WHERE page_views.date >= '2008-03-01' 

AND page_views.date <= '2008-03-31' 
AND page_views.referrer_url like '%xyz.com';

Create tables

Write queries



 Pig-Latin is a dataflow language

SET default_parallel 20; 
A = LOAD 'myfile.txt' USING PigStorage() AS (t, u, v); 
B = GROUP A BY t; 
C = FOREACH B GENERATE group, COUNT(A.t) as mycount; 
D = ORDER C BY mycount; 
STORE D INTO 'mysortedcount' USING PigStorage(); 



 Graphical mashup builder from Yahoo!



 Hadoop!
◦ Push the operation as close to the data as possible

 Condor
◦ Designed for CPU intensive applications
◦ Matchmaking with ClassAds

 Pegasus
◦ Uses condor for scheduling
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 Query: graph of relational algebra operators

 Optimality: response time or completion time

 Environment: cluster of dedicated distributed /

parallel hosts



 Query: graph of arbitrary operators

 Optimality: response time or completion time

and money

 Environment: cloud of hosts (elasticity)



 Virtualized IT resources offered as on-demand service

◦ Software as a Service (IaaS)

◦ Platform as a Service  (PaaS)

◦ Infrastructure as a Service (SaaS)

 Variety of charging and use policies



 Cloud of hosts (elasticity)

 Virtual resources (virtual hosts = containers)
◦ Available on demand
◦ Used for as much time needed
◦ Leased on a per quantum pricing scheme

 Illusion of infinite resources
 Arbitrary # of choices of price/performance ratio
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 Graph of arbitrary operators
 Non-relational data analytics
◦ Query log analysis
◦ Data mining
◦ Simulation model composition
◦ …

 User behavior analysis for 
European national libraries
◦ One of sixteen flows



 Time and money
 2-dimensional optimization
 Quantum: 1 hour

 Simple map-reduce flow
◦ A: 1 hour B: 10 minutes C: 1 hour

Schedule Time
(hours)

Money
(resource hours)

Winner

One host for all ops 18.60 19 5x cheaper
Different host per op 2.16 102 9x faster 



A B2B1 C

 Simple map-reduce flow with 
1 split (A), 2 maps (B1, B2), 
and 1 reduce (C)

 A, B1, B2, C: 1 hour

 Quantum: 1 hour

A

B2B1

C

Schedule Time
(hours)

Money
(resource hours)

One host for all ops 4.00 4

Cont. 1:

Quantum 
Thresholds



 Small output

A

B2B1

C

A B1 C

Schedule Time
(hours)

Money
(resource hours)

One host for all ops 4.00 4
Two hosts, small output 3.50 5

Cont. 1:

B2Cont. 2: δ
1

δ
2

δ1 + δ2 = 0.5



 Large output

A

B2B1

C

A B1 C

Schedule Time
(hours)

Money
(resource hours)

One host for all ops 4.00 4
Two hosts, small output 3.50 5
Two hosts, large output 4.20 6

Cont. 1:

B2Cont. 2: δ1 δ2

Dominated by

δ1 + δ2 = 1.2



 Simple map-reduce flow with 
1 split (A), 2 maps (B1, B2), 
and 1 reduce (C)

 A, B1, B2, C: 1 hour

 Quantum: 0.5 hours

A

B2B1

C

Schedule Time
(hours)

Money
(resource hours)

One host for all ops 4.00 4.0

Cont. 1:

Quantum 
Thresholds

A B2B1 C



 Small output

A

B2B1

C

A B1 C

Schedule Time
(hours)

Money
(resource hours)

One host for all ops 4.00 4.0
Two hosts, q=0.5 hour 3.50 4.5
Two hosts, q=1.0 hour 3.50 5.0

Cont. 1:

B2Cont. 2: δ
1

δ
2

δ1 + δ2 = 0.5



 Large output

A

B2B1

C

A B1 C

Schedule Time
(hours)

Money
(resource hours)

One host for all ops 4.00 4.0
Two hosts, q=0.5 hour 4.20 5.5
Two hosts, q=1.0 hour 4.20 6.0

Cont. 1:

B2Cont. 2: δ1 δ2

Dominated by

δ1 + δ2 = 1.2





 Athens Distributed Processing System

 Dataflow processing & optimization

 High-level queries transformed into dataflow graphs

ART: Run time system
ARM: Resource mediator

Cloud

Container

OptimizerQuery

Execution 
Plan ART

Registry

ARM



 Variety of parameters
◦ Monetary cost of resources
◦ Freshness of data
◦ …

 Ad-hoc operators
◦ Behavior is not known a-priori

 Variety of environments
◦ Clusters
◦ Clouds
◦ …

 Huge space of alternatives



 Queries represented in three abstraction levels
◦ Operator Graphs Algebraic operators
◦ Concrete Operator Graphs Software operators
◦ Execution Plans Hosted operators

 Huge space of alternatives
◦ Optimization performed in three corresponding steps
◦ Different choices at every step





 Dataflow scheduling (execution plan derivation)
◦ on the cloud with elastic resources
◦ optimizing tradeoff between completion time & money
 possibly constrained
 possibly left to the user
◦ of arbitrary operators with known characteristics



 Fastest plan within specific financial budget

Time

Money

Financial budget

Plan to execute



 Cheapest plan within specific time limit

Time

Money Time limit

Plan to execute



 Skyline of all Pareto optimal plans

Time

Money

plan chosen by user



 Constrained problems are symmetric

 Constrained problems: user provides time limits or 
budgets before optimization

 Skyline problem: user chooses best tradeoff after
optimization



 Speed of completion time reduction when more 
money is available

Time

Money

Ε

Ε





 Dataflow: graph(ops, flows)
 Operator: op(time, cpu, memory, behavior)
◦ time: completion time
◦ cpu: CPU utilization (e.g., 80%)
◦ memory: maximum memory required
◦ behavior: pipeline or store-and-forward
 Select is pipeline, Sort is store-and-forward

 Flow: flow(producer, consumer, data)
 Container: cont(cpu, memory, network)
◦ network: input/output rate (e.g., 100 MB/sec)



 Simplified 3D representation: CPU, memory, time
◦ Operator: box of resource requirements
◦ Container: empty box of CPU & memory capacities and 

infinite time

 Operators are stacked to fit in container

Time
Memory

CPU



 Space-shared resources (memory)
◦ Hard constraints to be satisfied for operators to run

 Time-shared resources (cpu, network)
◦ Can be multiplexed at the expense of time

 Dataflow constraints for consumers
◦ Store-and-forward: Wait until all inputs are ready
◦ Pipeline: Wait until store-and-forward inputs are ready



Time

Money

N containers

2xN containers

3xN containers

4xN containers





 Dataflow graph
◦ Lattice, Ligo, Montage, CyberShake
◦ Approximately 500 operators

 Operators
◦ 100% store-and-forward
◦ 100% pipeline

 Scheduling method
◦ All algorithms

 Execution Environment
◦ Different output data sizes
◦ Multi- & Uni- Processing



Montage Ligo

CyberShakeLattice



 Montage
◦ Created by NASA/IPAC
◦ Used to generate custom mosaics of the sky

 Ligo
◦ Used to analyze binary galactic systems

 CyberShake
◦ Created by Southern Calfornia Earthquake Center
◦ Used to characterize earthquakes

 Lattice
◦ Generalized map-reduce
◦ Height 3  standard map-reduce
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Large operator output size
reduces elasticity

 Lattice 7-7

 100% S&F

 10.000 random plans

 Varying parameter
◦ 10 – 150 containers
◦ Output size 





 Different forms of elasticity depending on 
◦ type of the workload
◦ network bandwidth/amount of data transferred 

 Skyline contains plans by different algorithms

 Skylines of algorithms and space exploration close

 Simulated annealing does not improve significantly 
plans produced by some greedy algorithms



 Very elastic plans (1)
◦ Money has great impact on time
◦ Low output and high graph parallelism

 Less elastic plans (2)
◦ Money have little  impact on time
◦ Low output and low graph parallelism

 Average elasticity (3)
◦ Balanced money/time tradeoff with knee
◦ High output and high graph parallelism

 No elasticity (4)
◦ Fastest plan is also cheapest
◦ High output and low graph parallelism

time

time

time

money

money

money

money

time

(1)

(2)

(3)

(4)



THANK YOU!
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