
Yannis Ioannidis

MaDgIK Lab
University of Athens & ATHENA Research Center

 Herald Kllapi

 Eva Sitaridi

 Manolis Tsangaris

 …

 Dimitris Achlioptas (future)

 Challenges

 Motivation

 The ADP System

 Problem definition

 Approach

 Experimental evaluation

 Conclusions & Future work

Op1
Op1

Op1
Op1

Op-i

Data1
Data1

Data1
Data1

Data-j

Q

C-k
C-k

C-k
C-k

C-k

C-k
C-k

C-k
C-k

C-k

C-k
C-k

C-k
C-k

C-k

A

Cloud Processing
Containers

Data Registry

Operator Registry

 Big Data Processing
◦ TB or PB of data (scientific, sensors, …)
◦ Efficiency

 High-level Data Languages
◦ Languages to easily express data operations
◦ Semantics

 (Query) optimization
◦ Reconciling efficiency and semantics

 Hadoop
◦ Open source software for reliable, scalable, distributed computing
◦ Won Jim Gray’s Terabyte Sort Benchmark in 2008 (209 seconds)

 Google Map-Reduce
◦ Jim Gray’s Terabyte Sort Benchmark in 68 seconds in 2009

 PNUTS (Yahoo! Research)
◦ Massively parallel & geographically distributed database system

 Pegasus
◦ Scientific workflows on the Grid

 Dryad (Microsoft Research)
◦ General-purpose distributed execution engine for coarse-grain

data-parallel applications

 Hive-QL
◦ SQL-Like

 Pig-Latin
◦ Dataflow language

 Mashups
◦ Yahoo! pipes
◦ MashQL

 Hive-QL is based on SQL

CREATE TABLE page_view(
viewTime INT,
userid BIGINT,
page_url STRING,
referrer_url STRING,
ip STRING COMMENT 'IP Address of the User')

COMMENT 'This is the page view table'
PARTITIONED BY(

dt STRING,
country STRING)

STORED AS SEQUENCEFILE;
INSERT OVERWRITE TABLE xyz_com_page_views
SELECT page_views.*
FROM page_views
WHERE page_views.date >= '2008-03-01'

AND page_views.date <= '2008-03-31'
AND page_views.referrer_url like '%xyz.com';

Create tables

Write queries

 Pig-Latin is a dataflow language

SET default_parallel 20;
A = LOAD 'myfile.txt' USING PigStorage() AS (t, u, v);
B = GROUP A BY t;
C = FOREACH B GENERATE group, COUNT(A.t) as mycount;
D = ORDER C BY mycount;
STORE D INTO 'mysortedcount' USING PigStorage();

 Graphical mashup builder from Yahoo!

 Hadoop!
◦ Push the operation as close to the data as possible

 Condor
◦ Designed for CPU intensive applications
◦ Matchmaking with ClassAds

 Pegasus
◦ Uses condor for scheduling

Op1
Op1

Op1
Op1

Op-i

Data1
Data1

Data1
Data1

Data-j

Q

C-k
C-k

C-k
C-k

C-k

C-k
C-k

C-k
C-k

C-k

C-k
C-k

C-k
C-k

C-k

A

Cloud Processing
Containers

Data Registry

Operator Registry

 Query: graph of relational algebra operators

 Optimality: response time or completion time

 Environment: cluster of dedicated distributed /

parallel hosts

 Query: graph of arbitrary operators

 Optimality: response time or completion time

and money

 Environment: cloud of hosts (elasticity)

 Virtualized IT resources offered as on-demand service

◦ Software as a Service (IaaS)

◦ Platform as a Service (PaaS)

◦ Infrastructure as a Service (SaaS)

 Variety of charging and use policies

 Cloud of hosts (elasticity)

 Virtual resources (virtual hosts = containers)
◦ Available on demand
◦ Used for as much time needed
◦ Leased on a per quantum pricing scheme

 Illusion of infinite resources
 Arbitrary # of choices of price/performance ratio

1

2

3

4

5

 Graph of arbitrary operators
 Non-relational data analytics
◦ Query log analysis
◦ Data mining
◦ Simulation model composition
◦ …

 User behavior analysis for
European national libraries
◦ One of sixteen flows

 Time and money
 2-dimensional optimization
 Quantum: 1 hour

 Simple map-reduce flow
◦ A: 1 hour B: 10 minutes C: 1 hour

Schedule Time
(hours)

Money
(resource hours)

Winner

One host for all ops 18.60 19 5x cheaper
Different host per op 2.16 102 9x faster

A B2B1 C

 Simple map-reduce flow with
1 split (A), 2 maps (B1, B2),
and 1 reduce (C)

 A, B1, B2, C: 1 hour

 Quantum: 1 hour

A

B2B1

C

Schedule Time
(hours)

Money
(resource hours)

One host for all ops 4.00 4

Cont. 1:

Quantum
Thresholds

 Small output

A

B2B1

C

A B1 C

Schedule Time
(hours)

Money
(resource hours)

One host for all ops 4.00 4
Two hosts, small output 3.50 5

Cont. 1:

B2Cont. 2: δ
1

δ
2

δ1 + δ2 = 0.5

 Large output

A

B2B1

C

A B1 C

Schedule Time
(hours)

Money
(resource hours)

One host for all ops 4.00 4
Two hosts, small output 3.50 5
Two hosts, large output 4.20 6

Cont. 1:

B2Cont. 2: δ1 δ2

Dominated by

δ1 + δ2 = 1.2

 Simple map-reduce flow with
1 split (A), 2 maps (B1, B2),
and 1 reduce (C)

 A, B1, B2, C: 1 hour

 Quantum: 0.5 hours

A

B2B1

C

Schedule Time
(hours)

Money
(resource hours)

One host for all ops 4.00 4.0

Cont. 1:

Quantum
Thresholds

A B2B1 C

 Small output

A

B2B1

C

A B1 C

Schedule Time
(hours)

Money
(resource hours)

One host for all ops 4.00 4.0
Two hosts, q=0.5 hour 3.50 4.5
Two hosts, q=1.0 hour 3.50 5.0

Cont. 1:

B2Cont. 2: δ
1

δ
2

δ1 + δ2 = 0.5

 Large output

A

B2B1

C

A B1 C

Schedule Time
(hours)

Money
(resource hours)

One host for all ops 4.00 4.0
Two hosts, q=0.5 hour 4.20 5.5
Two hosts, q=1.0 hour 4.20 6.0

Cont. 1:

B2Cont. 2: δ1 δ2

Dominated by

δ1 + δ2 = 1.2

 Athens Distributed Processing System

 Dataflow processing & optimization

 High-level queries transformed into dataflow graphs

ART: Run time system
ARM: Resource mediator

Cloud

Container

OptimizerQuery

Execution
Plan ART

Registry

ARM

 Variety of parameters
◦ Monetary cost of resources
◦ Freshness of data
◦ …

 Ad-hoc operators
◦ Behavior is not known a-priori

 Variety of environments
◦ Clusters
◦ Clouds
◦ …

 Huge space of alternatives

 Queries represented in three abstraction levels
◦ Operator Graphs Algebraic operators
◦ Concrete Operator Graphs Software operators
◦ Execution Plans Hosted operators

 Huge space of alternatives
◦ Optimization performed in three corresponding steps
◦ Different choices at every step

 Dataflow scheduling (execution plan derivation)
◦ on the cloud with elastic resources
◦ optimizing tradeoff between completion time & money
 possibly constrained
 possibly left to the user
◦ of arbitrary operators with known characteristics

 Fastest plan within specific financial budget

Time

Money

Financial budget

Plan to execute

 Cheapest plan within specific time limit

Time

Money Time limit

Plan to execute

 Skyline of all Pareto optimal plans

Time

Money

plan chosen by user

 Constrained problems are symmetric

 Constrained problems: user provides time limits or
budgets before optimization

 Skyline problem: user chooses best tradeoff after
optimization

 Speed of completion time reduction when more
money is available

Time

Money

Ε

Ε

 Dataflow: graph(ops, flows)
 Operator: op(time, cpu, memory, behavior)
◦ time: completion time
◦ cpu: CPU utilization (e.g., 80%)
◦ memory: maximum memory required
◦ behavior: pipeline or store-and-forward
 Select is pipeline, Sort is store-and-forward

 Flow: flow(producer, consumer, data)
 Container: cont(cpu, memory, network)
◦ network: input/output rate (e.g., 100 MB/sec)

 Simplified 3D representation: CPU, memory, time
◦ Operator: box of resource requirements
◦ Container: empty box of CPU & memory capacities and

infinite time

 Operators are stacked to fit in container

Time
Memory

CPU

 Space-shared resources (memory)
◦ Hard constraints to be satisfied for operators to run

 Time-shared resources (cpu, network)
◦ Can be multiplexed at the expense of time

 Dataflow constraints for consumers
◦ Store-and-forward: Wait until all inputs are ready
◦ Pipeline: Wait until store-and-forward inputs are ready

Time

Money

N containers

2xN containers

3xN containers

4xN containers

 Dataflow graph
◦ Lattice, Ligo, Montage, CyberShake
◦ Approximately 500 operators

 Operators
◦ 100% store-and-forward
◦ 100% pipeline

 Scheduling method
◦ All algorithms

 Execution Environment
◦ Different output data sizes
◦ Multi- & Uni- Processing

Montage Ligo

CyberShakeLattice

 Montage
◦ Created by NASA/IPAC
◦ Used to generate custom mosaics of the sky

 Ligo
◦ Used to analyze binary galactic systems

 CyberShake
◦ Created by Southern Calfornia Earthquake Center
◦ Used to characterize earthquakes

 Lattice
◦ Generalized map-reduce
◦ Height 3  standard map-reduce

x5

Large operator output size
reduces elasticity

 Lattice 7-7

 100% S&F

 10.000 random plans

 Varying parameter
◦ 10 – 150 containers
◦ Output size

 Different forms of elasticity depending on
◦ type of the workload
◦ network bandwidth/amount of data transferred

 Skyline contains plans by different algorithms

 Skylines of algorithms and space exploration close

 Simulated annealing does not improve significantly
plans produced by some greedy algorithms

 Very elastic plans (1)
◦ Money has great impact on time
◦ Low output and high graph parallelism

 Less elastic plans (2)
◦ Money have little impact on time
◦ Low output and low graph parallelism

 Average elasticity (3)
◦ Balanced money/time tradeoff with knee
◦ High output and high graph parallelism

 No elasticity (4)
◦ Fastest plan is also cheapest
◦ High output and low graph parallelism

time

time

time

money

money

money

money

time

(1)

(2)

(3)

(4)

THANK YOU!

	Dataflow Schedule Optimization on the Cloud
	Joint Work with …
	Contents
	Challenges
	Querying/Analysis/Processing�on a Data Infrastructure
	Challenge Focus
	Big Data Processing Systems
	High-level Languages�
	High-level Languages �(Hive-QL)
	High-level Languages �(Pig-Latin)
	High-level Languages�(Yahoo! Pipes)
	Optimization
	Motivation
	Querying/Analysis/Processing�on a Data Infrastructure
	Classical Query Optimization
	Emerging Query Optimization
	Cloud Computing 101
	Cloud Computing 101
	Motivation
	Motivation: Elasticity/Tradeoff
	Motivation:�Data Size/Net Speed
	Motivation:�Data Size/Net Speed
	Motivation:�Data Size/Net Speed
	Motivation:�Charging Policies
	Motivation:�Charging Policies
	Motivation:�Charging Policies
	The ADP System
	The ADP System
	Optimization Challenges
	Query Optimization in ADP
	Problem Definition
	Optimal Dataflow Scheduling
	Optimal Dataflow Scheduling
	Optimal Dataflow Scheduling
	Optimal Dataflow Scheduling
	Optimal Dataflow Scheduling
	Dataflow Elasticity
	Approach
	Dataflow, Operator, & Container Modeling
	Intuitive Representation
	Optimization Constraints
	Optimization Alg Abstraction
	Experimental Evaluation
	Experimental Testbed
	Dataflow Graphs
	Dataflow Graphs
	Lattice 7-2
	Lattice 7-7�(A small part only)
	Montage with 100 operators
	Results�(Space Exploration)
	Results
	Results & Conclusion �(Optimization Algorithms)
	Conclusions
	Preliminary Classification
	Diapositiva numero 55

